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Hydrodynamic Limit of a B.G.K. Like Model on
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Boundary Conditions for Scalar Multidimensional
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In this paper we study the hydrodynamic limit of a B.G.K. like kinetic model on
domains with boundaries via BV, theory. We obtain as a consequence existence
results for scalar multidimensional conservation laws with kinetic boundary
conditions. We require that the initial and boundary data satisfy the optimal
assumptions that they all belong to L' L® with the additional regularity
assumptions that the initial data are in BV|,.. We also extend our hydrodynamic
limit analysis to the case of a generalized kinetic model to account for forces
effects and we obtain as a consequence the existence theory for conservation
laws with source terms and kinetic boundary conditions.
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1. INTRODUCTION

In this paper we consider the following kinetic model

[at +Cl(U) : ax:l ge(x7 v, t)

1 .
=g (wa(x,t)(v)_ge(xa v, t)) m ‘QXVX (O’ T) (1)
g(x,v, 1) =g,(x,v,8) on I'yx(0,T) 2
gE(x’ v’ t) = gEl (x’ U’ t) On Fl_ X (05 T)5 (3)
g(x,v,0)=gl(x,v) in QxV “)
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and study its relation to the scalar multidimensional conservation laws

ow+0,[4,(w)]=0 in 2x(0,7) %)
Boundary conditions for w on I'; x (0, 7) and I'; x (0, T) 6)
w(x, 0)=w'(x) inQ @)

Here, 2 = (0, 1) x R?~! is the physical domain. The boundaries are defined
as follows

I, = {0} x R4-1, I = {1}><[Rd_1,
Iy ={(x,v) e {0} x R "xV :a(v)-n(x) <0}
'y ={(x,v) e {1} xR "xV :a(v)-n(x) <0}

where n denotes the exterior unit normal vector to . The boundary con-
ditions in (6) for the conservation laws are prescribed on a part of I
resp. 1. These boundary conditions will be precised in Definition 3.1. The
set V' = R is the velocity domain. The function g, describes the microscopic
density of particles at (x,¢) with velocity v in the kinetic domain. The
function w describes the local density of particles at (x, ¢) in the hydrody-
namic domain. The physical parameter € > 0 is the microscopic scale. The
functions g° and w° are the initial data while g, and g, are boundary data.
The boundary conditions in (6) involve also w, and g, which are given
boundary data; see Definition 3.1 below. Let A =(4;),<;<4, the compo-
nents of A are assumed to satisfy 4,(-) e C! and are related to a;(-) by
a;,(-)=A;(-),i=1,...,d. The local density of particles w, at (x, ¢) is related
to the microscopic density g, by w.(x, t) = fV g.(x, v, t) dv. The collisions in
the kinetic domain are given by the nonlinear kernel in the right hand side
of Eq. (1) in which y,(v) is the signature of u defined by

+1 if O0<v<u
1. (v)=¢ —1 if u<v<0 ®)

0 otherwise

Our main objective in this paper is to describe the conservation laws
(5)—(7) as the macroscopic limit of the Boltzmann-like equations (1)-(4), as
the microscopic scale, € > 0, goes to 0. This problem is a particular case of
the more general problem of describing compressible Euler equations as the
macroscopic limit of Boltzmann or B.G.K. equations, as the microscopic
scale goes to 0. The convergence of the moments of the kinetic distributions
of Boltzmann or B.G.K. equations to weak solutions of the compressible
Euler equations is still an open problem. In the case of strong solutions this
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question has been solved by Caflisch.® The case of domains with bound-
aries is still completely open. In this paper we give an answer to this ques-
tion in the case of the B.G.K. like model (1)-(4).

The study of the hydrodynamic limit of the kinetic model (1)-(4) in
full space (2 =R?) has been initiated by Perthame and Tadmor.”” The
proofs of the main results in ref. 7 rely in a fundamental way on the finite
speed of propagation together with the compactness of the support in the
velocity v of the microscopic density, which are in turn based on the
uniform L* boundedness (in €) of the macroscopic density. But the argu-
ment used in ref. 7 to prove the L® uniform with respect to € bound of the
macroscopic density is not entirely correct (consult Remark 2.2). Later
Nouri, Omrane, and Vila attempted to study this hydrodynamic limit in the
case of R™ x R?~1.©® Unfortunately their proofs are not entirely correct. In
their proofs of the various L, L', and BV uniform, in €, estimates, they
have used in an essential way Gronwall lemma, which does not yield the
uniform bounds they claimed. These uniform bounds are central to their
proofs. In ref. 6, Proposition 3 on p. 784 and Proposition 4 on p. 786, are
obtained by applying Gronwall lemma to the inequality

(1
V.(t) <j0 — etV (5) ds+C )

and then they conclude that |V_(¢)| is uniformly bounded. This is not the
case as the following counterexample shows. Take V.(z) = <, V, satisfies the
inequality (9), however, V_ is not uniformly in € bounded.

In this paper, we shall see how the ideas developed by the author in
refs. 14 and 15 to study the more difficult coupled system of kinetic equa-
tions (1) and their hydrodynamic limit (conservation laws of the form
in (5)), which is a simplified case of the more general coupled system of
Boltzmann equations and their hydrodynamic limits (compressible Euler
and Navier—Stokes equations) introduced and studied in refs. 11-13 (see
also the references therein), can be applied to study the hydrodynamic limit
of the kinetic model (1)-(4) in the case of domains with boundaries. Our
proofs rely on optimal assumptions on the initial and boundary data and
do not use any technical assumptions. As a consequence of our study we
are able to obtain a general proof of the L uniform (in €) bound of the
macroscopic density. This proof is valid for the case of domains with
boundaries as well as the full space case. This allows us to conclude that,
fortunately, the results in ref. 7 are true although their proofs given in ref. 7
are incomplete. For a further study of this problem and a generalization of
the concept of kinetic formulation to conservation laws on domains with
boundaries, we refer to the author’s work.®
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In the second part of this paper, we introduce a generalization of the
kinetic model (1)-(4) that includes forces effects and whose macroscopic
limit, as the microscopic scale go to 0, yields conservation laws with source
terms. This kinetic model is more appropriate to describe the physics at the
microscopic level than the model proposed in ref. 7 for the approximation
of conservation laws with source terms. We then study the hydrodynamic
limit of the proposed kinetic model and prove the existence theory for its
continuum limit, i.e., the conservation laws with source terms.

This paper is organized as follows. In the next section we study the
kinetic problem. We prove various a priori estimates that are needed for
the study of the hydrodynamic limit of the kinetic problem. In Section 3,
we precise our definition of physically correct solution to the problem
(5)—(7). We then study the hydrodynamic limit of the kinetic problem and
prove our main result. In Section 4, we study the one dimentional case via
compensated compactness. We prove the convergence of the moments of
the kinetic distributions to the solution of the conservation laws without
any compactness argument (based on BV, theory). Finally in Section 5,
we extend our hydrodynamic analysis to the case of a generalized kinetic
model to account for forces effects and we obtain as a consequence the
existence theory for conservation laws with source terms and kinetic
boundary conditions.

2. THE KINETIC EQUATIONS

In this section we shall study various properties of the solution of the
kinetic equations (1)—(4). Some of our proofs are closely related to those
for the full space case in ref. 7. However, our problem is on a domain with
boundaries. This introduces new difficulties that are not present in the full
space case. These difficulties must be handled by different techniques. We
begin by stating a result about the well posedness of the kinetic problem
(1)—(4). We then establish various properties of the solution, including L%,
L', and BV, estimates. These estimates will be used for the study of the
hydrodynamic limit of Problem (1)-(4) as € — 0. We shall use the following
notations.

Qo={(x,0,0)eQ2xVx(0,T):x;,—a,(v) t <0}
Qo ={(x0,0)eRxVx(0,T):0<x;,—a,;(v)t<1}
Q, ={(x,0,0)eRXxVx(0,T):x;,—a,(v)t>1}

where x = (x;, x,).
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2.1. Existence Theory and Basic Estimates

We establish in this section the existence and uniqueness theory and
derive basic estimates for the solutions of the kinetic equations.

Theorem 2.1. Assume that
ge e L'(2xV), a(v)-ng,, € L'(I'y x(0,T)), a(v)-ng, € L'(I'y x(0,T))

Then the problem (1)-(4) has a unique solution g, in L*((0,7);
LY(2xV)). Moreover, g, satisfies the integral representation

In Q,

X X,
8(X, 0, 1) =g | X ——— = ax(v), v, 1— exp(—x; /(a;(v) €))
() a(v)
1 ¢t
2] T 0. 0(0) ds
ay(v)
In Q

1 rt
g.(x, v, 1) =gl (x—a(v) t, v) exp(—t/e) +E L eC Y s, 9 (0) ds

In ©,
1—x, x;—1
ge(xa v, t) =81 | Xx +— a*(U), v, 1— eXp((l _xl)/eal(v))
a,(v) a,(v)
L (s=0)/e
+E J; x—1 e Xwe(x(s),s)(v) dS

)

where x(s) = x+ (s—1) a(v), x = (x;, x4), and a(v) = (a,(v), a,(v)).

Finally, let g, and G. be two solutions of (1)—(4) with corresponding
densities w,(x, t) = [, g.(x, v, ) dv and W.(x, 1) = [, G.(x, v, t) dv; and let
g%, 2.0, 8. resp. G°, G, G., denote the corresponding data. We have

lge — Gell @ xr) +11a(v) - n(ge — Gl r i x 0,1y T+ 1a(v) - n(ge — GlL! 14 x 0, 1)
<l|lg!— Gg”Ll(QxV) +lla(v) - n(geo — Geo)ll'ry x 0, )
+lla() - n(ge — Ge)llz ' ri x 0,09 (10)
Remark 2.1. Although we can derive contraction properties directly

from the integral representation, we prefer to use a different method, which
allows us to obtain the inequalities in (10).
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Proof of Theorem 2.1. We begin with proving the uniqueness and
the continuous dependence of the solution on the data given in (10). These
estimates are needed for the proofs of various results in this paper. There-
fore, we shall give a somewhat detailed proof. The idea of the proof is to
use a combination of the author’s method*'V and ideas from ref. 4.

The function G, satisfies an equation similar to Eq. (1). Subtracting
this equation from Eq. (1), and multiplying the resulting equation by ¢ a
test function in C'(Q x ¥V x [0, T']) to be precised later, and integrating by
parts, we obtain

[, (e=GCoo)0=|  ((&=G)o)-.-.0)

[, @A) 0)(0)(E~G)

[ @) n(go—go) o+ a(®)-n(ga—Ga)e
Iy x(0,1) ryx(0,1)

+[ e (g —G)e+[  a()n(g.-G)e
I'y x(0,1) I'yx(0,2)

| (. =20~ (8 =GN @ (1)
€ JOxVx(0,1)

We then take ¢ =sign*(g.—G.) ¥(x,t) with xsign“(x) >0 xeR,
and { is a nonnegative test function and sign” is a regularization of sign
function. Plugging in (11) and passing to the limit as 4 — 0, we obtain

Jo, (8=GINCo 04 [ -  a(w)nlg.~Gilw

[ a) nle—Gly+|  a()-nlg—Gul¥
I'{x(,1) I'yx(0,1)

+[ @) nlga—Galv=| (g.=Gl¥)(-,,0)
Iy x(0,2) QxV

1

€ J‘Q><V><(0, 1)

[(XWE _XWE) Sign(gs _Ge)_ |ge _Gel] ‘//

ooy @Fa®-0)0) 12~ G (12)
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Using the properties of y, this yields
[ Ue=GlnC..0+[  a@)-nlg.—~Gly
QxV Iy x(0,1)
+[ . a@)nlg—Gly
'y x(0,1)

<, (g=GIWC. 0] aw)nlgo—Gal ¥

ryx(0,1

S R ORT AR AT (0, +a()-0)¥) 8.~ G

(13)

QxVx(0,t

Taking now y(¢) = 1 yields the estimate (10).
To prove the existence of a solution to the kinetic problem, we use the
following iterations

[at+a(v)'ax] g:+1(x’ v, t)

1
= E (Xw:(x,t)(v)_g:+l(x, v, t)) in Qx V x (09 T) (14)

gt (x, v, 1) =go(x,v,8) on I'yx(0,T) (15)
g (x, 0, 1) =g, (x, v, 1) on I'tx(0,T), (16)
g (x, v, 0) = g2(x, v) in QxV (17)

Using (12) in the present context with g. =g"*' and G. =g™"!, and
using the properties of y, we obtain

Jo, (8c=GINCo 0] a(w)nlg.~Gilw

1
+[  a@) nlg.—Gly+- | lg.—G.l ¥
I'fx(,1) €Jo

xV x(0,1)

1

€ foVx(O,t)

Gtwr = xwr) sign(g. —G) ¥
L @a()-2)(0) 2. ~G)

1
< @ +a(®)-0)() lg.~ Gl += |
) €

QxVx(0,¢ QxV (0,

lez—glly (9)
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Taking = e <%, 0 < 5 < ¢, with « a positive constant, we then obtain

[ et —gr W, 0+[ | a()-nlgi —gr 'y
QxV I'gx (0,0

R m 14+a
[ a@)nigr—gr 1+ — |
I, € QxVx(0,1)

1
<- lgc —gZ| ¥ (19)

€ JOxVx(0,1)

lgit! —gr |y

Hence we obtain

Y gt —gr < lgz—g”| ¥ (20)

L)xVx(o,t) 1+ocLz><Vx(o,t)

This and a reuse of (19) proves that the iterations are contracted to the
unique fixed point in L*([0,T]; L'(2x V")), which satisfies Eq. (1) and
also the boundary and initial conditions (2)—(4). We also infer from the
inequality (10) that the solution g. depends continuously on the initial and
boundary data.

The integral representation is obtained using the characteristic
method. The proof of the theorem is now finished.

2.2. Kinetic Entropy

We shall prove an entropy inequality for the solution of the kinetic
problem. This is stated in the following theorem.

Theorem 2.2. The solution to the kinetic problem satisfies the
relation

(@t a)-0)W) e —nal +[ a@)mh g =1l

J.QxVx(O,T

+[ a()mp g~ <O
ryx(,T)
YWeClQxVx(0,T)), y=>0, VkeR (21)

Proof. Multiplying Eq. (1) by ¢ =sign*(g.—yx) ¥(x,t) with
sign“(x) the regularization of sign function mentioned in the proof of
Theorem 2.1, and y is a nonnegative test function in C{(QxV x (0, T)),
and proceeding as in the proof of Theorem 2.1, and using the properties
of x,,, we obtain the entropy inequality (21).
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2.3. Basic Estimates of the Solution

We shall state and prove here some basic estimates for the solution of
the kinetic problem. These are essential for the study of the hydrodynamic
limit. We begin with L® estimates.

Lemma 2.1. Assume that

||gso||L°°(rax[0, m <Ci, ||g2 "L°°(.Q><V) <G, llge1 ||L°°(r;x[0, m <G

with C,, C,, and C; positive constants independent of €. Then g, is uni-
formly bounded in L*(2 xV x [0, T]). Moreover we have

lgll, < max(”geO"Lw(Fax[O, T)> ||g2 "L°°(.Q><V)s ||g51||L°°(r(x[o, T])) +1

Proof. The proof is based on the use of the integral representation of
the solution respectively on Q,, 2,,, and Q,.

We now present estimates of g, and w, in L®([0, T]; L'(2 xV)) and
L*([0, T]; LY(R2)) respectively.

Lemma 2.2. Assume that

la(v) '”geonL‘(rgx(o,T)) <(i, ||g(e)||L1(ng) <G,

la(v) - ng., "L‘(r(x(o,T)) <G

with C;, C,, and C; positive constants independent of €. Then g, is uni-
formly bounded in L*([0,T]; L'(2xV)) and w, is uniformly bounded in
L*([0, T]; LY(R)). Moreover, we have

llg. ||L°°([0, T LY@ xV))

||we||L°°([0, @) S
< lla(v) - ngeolliwrg xo.ry +1a(0) - ngallLirr x0.7)

+ ”g(e) ||L1(gx V)

Proof. Using Formula (10) with G. = 0, we obtain
[ leunl<| lgol+] o) ngl
QxV QxV 'y x(0,T)

+[ la(v)-ngal
Iyx(0,T)

The lemma then follows.
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Next we shall show that under the conditions that the supports in
v eV of the data are compact, the supports in v € V' of g, remain compactly
supported with supports included in a fixed compact set independent of €.
We shall also give some information about the speed of propagation a(v).
This is stated in the following lemma.

Lemma 2.3. Assume that

||gso||L°°(rax[0, m <Ci, ||g2 ||L°°(ssz) <G, llge1 ||L°°(r;x[0, ) <GCs

with C,, C,, and C; positive constants independent of €. Assume also that
the initial and boundary data g°, g.,, and g., are compactly supported in
v € V with supports included in a fixed compact set independent of €. Then

(1) w, is uniformly bounded in L*(Q x [0, T']).

(i) g. remains compactly supported in v € V' with support included
in a fixed compact set independent of e.

(iii) The speed of propagation a(v) is finite.

Remark 2.2. In ref. 7 the uniform L® boundedness (in €) of the
macroscopic density u, =5V f.(x,v,t)dv and hence the compactness of
the support in v of f.(z, x, v) together with the finite speed of propagation
remained unproven. Since in their proof, which is given on p. 504 lines 6
through 12 of ref. 7, their argument is incorrect. Following we quote lines 6
through 12 of p. 504 of ref. 7.

“2. Finite speed of propagation. We assume that initially, f.(x,-, 0)
has a compact support in R,. Let us first show that f.(x,-,?) remains
compactly supported. Indeed, by (2.6), f.(x,v,t) and hence u.(-,t) are
uniformly bounded, and therefore the contributions of yx,. ,(v) on the
right hand side of (2.2) are supported by ve[—u,,u,], where u, =
. (x, Ol 2w xrr)- Consequently, f.(x,-,?) given in 2.2 remains com-
pactly supported for all # > 0, with support contained in supp, f.(x,-, 0)
U=y, Up] .

The argument: Indeed, by (2.6), f.(x,v,¢) and hence u.(-,?) are
uniformly bounded, is incorrect since the uniform (in €) boundedness of
a function (here f.(x,v,?)) in L*(R‘x Rx R") does not in general yield
the uniform boundedness (in €) of its velocity average (here u.(x,?)=
fr fo(x,v,1)dv). Take for example the function A (x,v,?)=e"x
exp(—t—Y |x;|) and its velocity average u_(x, t) =2 exp(—t—3 |x;|).

Since the main results of the paper of ref. 7 use in a fundamental way
the finite speed of propagation together with the compactness of the
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support in the velocity v of the microscopic density f.(¢, x, v), which are in
turn based on the uniform L® boundedness (in €) of the macroscopic
density u, = L, f.(x, v, t) dv, the paper of ref. 7 is not correct.

In ref. 8, in order to obtain the uniform (in €) bound of u.(x, t) =
fa fo(x,v,1)dv in L*(R?xR*), and hence to fill the gap of ref. 7, the
author assumed an additional assumption on the sign of the data:
f.(-,v,0)sign(v) = 0. It is clear that this assumption is very restrictive.

Because of the above it is clear that the general proof of the above
results remained open despite the various attempts by various authors. We
shall give below two different proofs. One is general and does not use any
additional assumptions, thus solves also the gap in ref. 7, and the second
relies on the additional assumption on the sign of the data, and thus allows
us to compare the two proofs. The first proof of (i) given below solves the
gap in ref. 7 and allows us, fortunately, to conclude that the results in ref. 7
are true although their proofs given in ref. 7 are not correct.

Proof. (i) First and general proof of the uniform in € L* bound.
Before we give the proof we shall outline the main steps. Let
A, ={(x,0,) e XV x(0,T) | |w.(x, t)| > |v]}
V.={veV|(x,v,t)e A, for some (x,7) e 2x(0,T)}

Let |F| denote the Lebesgue measure of the set F. Let m, and n, denote the
Lebesgue measure of A, respectively V.. Let C, > 0 be a fixed positive con-
stant. Let 1 denote the set of all € > 0 such that

Wello > Co

We prove in a first step that there exists y > 0 such that y <m, < C,; uni-
formly in e €Y. We then deduce that n.=|V.| <C, uniformly in e€Y
where C, is a positive constant. In the third step we show that this uniform
boundedness implies that

1/p
'[ <I g (x, v, )| dx dt) dv<C,
v \Jex(©,T)

uniformly in e € Y. Here p is arbitrarily large. Finally, using Minkowski
inequality, we obtain

P 1/p 1/p
<f <f lge (. v, 1) dv> dxdt> <f <f lg.(x, v, t)|1’dxdt>
Qx(0,T) v 14 2x(0,T)

<G
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Thus, we obtain ||j,, |g| dvl|Lr@x 0,7y < C; uniformly in € € Y. By the prop-
erties of the L® norm, as p — oo, we conclude that ||SV ge| dvllL=@x 0, 1Y)
< C; uniformly in eeY. Therefore, ||jV |g| dvl| L= x @,y 1s uniformly
bounded in € and hence w, is uniformly in € bounded in L*(2 x (0, T')).

Step 1. We first notice that for every fixed €, using Gronwall lemma
we conclude that g, is in L®(2x(0,T); L'(V)) and hence w, is in
L*(22x(0,T)). Observe that such argument does not provide a uniform in
€ bound of g, in L*(2 x (0, T); L'(V)).

Let m, and n, denote the Lebesgue measure of A4, respectively V.. We
know from Lemma 2.2 that

me=| Huco@ldxdodi=[ |w(x,0ldxdt<C  (22)
QxVx(0,T) Qx(0,T)

where C is independent of €.
Let C, > 0 be a fixed constant. Let ¥ denote the set of all € > 0 such
that

”we "oo > CO (23)
We know from the begining of this proof that w, is in L*(2 x (0, T"))
for every fixed e. If the set ¥ is empty or finite then the proof will be
concluded easily. Therefore, we assume that ¥ is neither empty nor finite.
In this step we prove the following statement
3y > 0 such that y <m, uniformly in e e ¥ 24)

We begin by proving the following statement.

dp with 0 < < Cy, IE=2x(0,T) with |E| >0
such that |w_| ., z > B uniformlyin eeY (25)

If (25) is not true then

VB with 0 < < C,y, VE =« Q2 x (0, T) with |E| >0,
Je €Y suchthat |w|, < B (26)
Thus, taking f = C,—1 and E = Q x (0, T'), there exists €, a subsequence in

Y such that |w, (»)| < C,—4, a.e. y € E. This implies that [w, [, < C, with
€, € I'. This contradicts (23). Therefore, (25) is true.
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If the set E in (25) is of infinite measure, then we can select a subset E’
of E with 0 < |E’| < oo such that (25) holds for E’. If not then

VB with 0 < f < C,, VE' = Q2% (0, T) with 0 < |E’| < o0,
Je €Y such that |w |, » < B 27

Thus there is a subsequence w, satisfying ||w, ||, z, = 0 as n — co with
E, an increasing sequence of subsets E, of E (E,cE,,, < E) of finite
measures such that (), £, = E. Hence for any J > 0 there is an integer Nj
such that for n> N; we have |w, ||, z, <J. Now let m > N;, since in par-
ticular |lw,, gll, > B uniformly in n (consult (25)), |w,, rl., > B. By the
properties of the L® norm there is a bounded subset F,, of E with small
positive measure such that |w_ (x)| > g for a.e. x € F,,. On the other hand
there is an integer p > N; such that F, = E,. Therefore, we have ij |w, |
> |F,,| p and [Fm We, | < 1Ful We, o, £, < 0 |F,,|- We then obtain g < J. Since
J was arbitrary we obtain a contradiction. So we may assume that the set £
in (25) satisfies 0 <|E| <oo. This is important since we will use below
Egoroff theorem for sequence defined on such set E.

We now prove that (24) is true. Assume to the contrary that (24) is not

true. Then there is a subsequence €, in Y such that m. .—— 0. But we have

€k

= o @l dxdvdi={ (x| dxdt
QxVx(0,T) % Qx(0,T) k
Hence (g, 0.7 [We (x, )] dx dt — 0. Therefore there is a subsequence w,,

that converges a.e. to 0 on 2 x (0, 7). In particular, w, — 0 on E, where E
is the set given in (25). Using Egoroff theorem,® w, 50 almost uniformly

on E (recall from above that E can be selected to satlsfy 0 < |E| < o). That
is, V>0, 3E, c E such that |[E\E,| <7 and w, — 0 uniformly on E,.

Now fix >0 small and let 6 > 0 be given, then there is n’ depending on 5
such that

we, (W <9 VyekE, Ve, <€, (28)
Now let
E= {xeE: [we, (X)| > B Ve, < €, } (29)

then (25) implies that |E| >« > 0 for some a > 0. Now choose # <« then
E, must contain a subset £ — E with |E| > 0. For otherwise the set F = E\ E
where

E={xeEnE,:w, (x|>pVe, <c,}, and |E=
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is included in E\E, (FcE\E,) and a<|F|<|E\E,| <y <o which is
impossible. Now pick J < f in (28). Then in particular, we obtain

"wekn ”oo,E < ﬂ Ve-k,, < 6k,,r
which is a contradiction to (29). Therefore, (24) is true.

Step 2. We prove that [V,| < C uniformly ine e Y.

Step 1 yields 0 <y <m, =|A.| <C Ve €Y (consult (22) and (24)). Now
using the regularity of the Lebesgue measure, we have for any # > 0 such
that y—# > 0, there exist a compact set F?7 and an open set U” such that
FlcA _cU! and |A.|—n<|F!|<|A,] and |A.|<|U?| <|A|+n<C+n.
Thus for # < y/2, there are F? and U” so that

0<p/2<|F"|<|A|<|U"<C+y/2 VeeY (30)

Above we have used (22) and (24). Now by Vitali’'s Covering
Theorem,® there exists a countable collection 4. of disjoint closed balls in
U? such that diam B<#n <] for all Be %, and |U! —Jz.4 B|=0. Using
(30) above, we then conclude that ||Jz.4 B| is bounded below and above
by positive constants independent of € € Y. Thus the projection V, of A,
with respect to the v axis has a one dimensional Lebesgue measure which is
bounded above by a positive constant independent of € € Y. This proves
the fact that n, = || < C with C a constant independent of e € 1.

Step 3. We prove that

1/p
J(J‘ |ge(X,v,t)|”dxdt> dv<C
v \Jex©,T)

where C is a positive constant independent of €.
We write the integral representation of the solution g, in £, in the
form

X X
_la*(v)s v, t :

a,(v) ay(v)

g(x, v, 1) = g <x* - > exp(—x,/(a,(v) €))

e ¢ t)/EXwe(x(s), s) (U) dS

+(1—exp(—x,/(a(2) €))) 5 o e s

ay(v)

Thus g.(x, v, t) is expressed as a convex combination. So by Jensen
inequality, we obtain for any convex function ¢(g,),
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o(8.(x. 0, 1) <g <geo <x* -

X1

a,(v)

>> exp(—x, /(a,(v) €))

1 r¢
te f,, o €T x99 (1)) s

ay(v)

We obtain similar formula for g.(x, v, ¢) in Q, and Q,. Now taking
¢(g) = |g|” and integrating over x and ¢, we obtain

[ lglx o0l dxdr
Q2x(0,T)

< 8o, v, D7 dy di+ 1g2(x, v))I7 dx
T) Q

Iy % (0,

1 ¢
[ lga(y,v0lrdydi+ ~ [ e | dx ds dit
I x(0,T) 2x(0,T) € Jo

Taking the p-root of both sides and integrating over V', we obtain

1/p
f <I |ge(x9 v, l)lp dX dt> dU
v \J2x(0,T)
1/p 1/p
< 4'? max [j <f |geo(x, v, t)|1’> dv, j <J |g2(x, v))|” dx> dv,
vV \YIyx(0,T) v \Jo
1/p
_[ <_[ |g51 (xa v, t)lp dx dt> dl),
v \YIx(0,T)

1 rt -1/ 1/p
Lgm(o’ﬂgke |wa(x,s)|dxdsdz> dv] 31)

We only need to prove that

L (s—1)/e 1/p
fV J‘.Qx(() T) E J‘O e wag(x,s)l d-x dS dt> dU

is bounded uniformly in € for p arbitrarily large. The other terms in (31)
are clearly bounded uniformly in € for p arbitrarily large. For example,
the term [, ({1, <0, ) 18co(x, v, 1)|?)"/? dv is uniformly bounded for p arbi-
trarily large since by assumption g., is uniformly bounded in € in
L*(Iyx(0,T)xL'(V)) and similarly for {, ([, |g2(x, v)[?)"/*dv and
SV (51"1 0.7y 18e1 (X, v, 1)|” dx dn)''” dv.
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Now we have
1 ¢
[ e gl dsdidx =] [0l (1= ds dx
@x0,7) € Jo 2x(0,T)

Thus, we have

L ey dedsd ) d
J‘V -[QX(O,T) E '[0 e |Xw5(x,s)| x ds at v
1/p
=f <'[ |Xw€(x, s)l (1 _e(S7T)/€) dS dx> dl]
vV 2x(0,7T)
1/p
= <f IXWE(x, s)l (1 _e(s—T)/e) dS dx> dU
Ve 2x(0,7T)

1/p ,
< ( [ ol A= ds dx du) ()"
V. J2x(0,T)
<clrctr=cC (32)
with C independent of e. Above we have used Lemma 2.2, Holder inequal-

ity, and the uniform boundedness of n, = |V_| obtained in Step 2.
Using this in (31), we conclude that

1/p
_[ <J |ge(xa v, t)|pdxdt> dv
v \Jex©,T1)
1/p
<41/pmax[f <f Igeo(x,v,t)|"> dv,
v \JI,x(0,T)

JV <Lz |g2(x, U))lpdx>l/p dv,

1/p
J(I |ge1(X,U,t)|"dxdv> dv,C‘/PCI/p']
v \/Ix©,1)

<C (33)

Step 4. We conclude here that g, is uniformly in € bounded in
L®(Q2x(0,T); L'(V)). Therefore its velocity average w, is uniformly in €
bounded in L*(2 x (0, T)).

Using Minkowski inequality,® we have

P 1/p 1/p
<j <f |g5|dv> dxdt) <j <f |ge(x,v,t)|1’dxdt> dv
2x0,T) \Jv v \JQx(0,T)

34
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Taking the limit as p— oo in (33) and (34), we conclude that
||j,, 8| dvl|L=@x o,y 18 uniformly in € bounded and hence w, is also uni-
formly in € bounded in L*(€2 x (0, T")). This concludes the proof of (i).

Remark 2.3. In fact we could have proved this result by reasoning
by contradiction. At the begining of Step 1, we assume that the family
[wcll, is not uniformly in € bounded, then there is a subsequence w_ such
that |w, ||, = 00 as n— 0. So for any 4 >0 there is an integer N, such
that for all n> N, |w_ |, > A. Let I denote the set consisting of all €,,
n>= N,. By the properties of L* norm, for each n> N, we can find E, a
subset of @ x (0, 7) with 0 < |E,| < ;, such that |w_ (x)| > A fora.e. xe E,.
The set E=J,>y, E,, satisfies 0 <|E|<oo and |w, |, > A. Now the
proof of (24) in Step 1 and the proofs in Steps 2 and 3 remain unchanged
with the obvious modification that Y is replaced by I defined above. At the
end of Step 4, we obtain that ||f, |g.| dvll,=qx, 1) is uniformly in €, €7
bounded. This contradicts the fact that ||w,,[|,, — 0o as n — oo.

Second Proof of the L* Bound

Here, we shall assume that [g%(x, v)| <1, |g.o(», v, )| <1, |g.(p, v, 1)
< 1. We shall also assume as in ref. 8 that g°(x, v) sign(v) = |g°(x, v)|,
geO(ya v, t) sign(v) = |g50(y9 v, t)|9 and gel(ya v, t) sign(v) = |g51(y9 v, t)l Let
# denote a positive number such that the support in v of g°, g.,, and g, is
included in [—7, 7] (recall that we assumed that these data have supports
that are included in a fixed compact set of ). Then using the sign con-
dition on the data and the integral representation we conclude that
g.(x, v, t) sign(v) = |g.(x, v, t)|. Using the fact that the data are bounded by
1 and the integral representation respectively in Q,, ,,, and Q,, we obtain
that |g.(x, v, )| < 1.

To obtain the uniform in € bound of w,, we use the iterations (14)—(17)
and its corresponding integral representation

In Q,
[€)) _ X1 X1
8. (X, v, t) =80 | Xx——— % a*(v)a v, t— eXp(_xl /(al(v) 6))
a,(v) a,(v)
1 rt
+-= . e(“’)/exw%x(s) o(v) ds
€ Ji— L e
o)
In Q,

1 rt
805, 0,1 = g(v—a(0) £,0) exp(—1/) 4 || L1 4 (0) ds
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In Q,

1—x x;—1
ggl)(xa v, t) =8 <x* +—1a*(u), v, I— -

a,(v) a,(v) > exp((1—x,)/ea;(v))

1t B
+E jt7x1,1 e(S t)/EXwg(x(s), s)(v) dS

ap(v)

where x(s) = x+ (s—1) a(v), x = (x;, x4 ), and a(v) = (a,(v), a,(v)).

Let w® be an initial iterate such that |w°| =g 7y <. Then by
definition of #, we have g.,(y,v,1)=0, g.,(»y,v,¢)=0, g(x,v) =0, and
X', n(v) = 0, for all v with [v] > 7.

Now using the above integral representation, we conclude that
g(x,v,t)=0 for |v|>0. Using this and the sign property of g,
(lg.(x, v, t)| = g.(x, v, t) sign(v)), we obtain

1= 2G5 do
14

B

)

Thus, the contraction operator maps elements w® with |[W°|l =g . 1))
< ¥ into element with the same property. Therefore the fixed point w, has
also this property. This concludes the proof of the uniform bound in € of
w, in L2(2 % (0, T)).

<max (| swonal || letnonold
v>0 v<0

<7D

(ii)) Now set w,, =sup.. [[Wellz=@x[0, 7, the terms x,_in the integral
representation in Theorem 2.1 are supported by ve [—w,, w, ], the other
terms are supported by v in the compact supports of the boundary and
initial data. Thus, for all 1 € [0, T'], g. remains compactly supported, with
compact supports included in Supp, g° U Supp, g., U Supp, g, U [—W.., wo, 1,
which in turn are included in a fixed compact set independent of e.

(iii) Now set a,, =sup; ;< ,es |4;(v)], with S = Supp, g¢ U Supp, g.,
U Supp, g U [—Wy, W, ]. We conclude that sup, ¢, <y ,es |a:(v) <a,,
where S’={vesupp, g.(x,.,1),(x,1)eR2x%x(0,T)}. And the lemma is
proved.

In order to pass to the limit as the microscopic scale goes to 0, we shall
need to control the spatial and temporal variations of g, and w, in terms
of €. This is given in the following lemma.
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Lemma 2.4. Assume that

lgeoll L=y x 1o, 71y < Ci» ||g(e)||L°°(QxV) <G, ge1 2y xr0,77) < Cs»
”g(e)”Ll(!)xV) <Cy, l|a(v) '”geo”Ll(rgx(o,T)) < (s,
la(v) -ng, ”LI(I’I_X(O, ) < Cs, ||g2 Iz, Briecy < Cos
with C;, i =1,..., 7 positive constants independent of €. Assume also that
the initial and boundary data f.,, g°, and g,, are compactly supported in

v eV with supports included in a fixed compact set independent of .
Then

1) g(,-,t) and w(-,t), te[0,T] are uniformly bounded in
BV, (2 x L'(V)) and BV, () respectively.

(2) w, is time Lipschitz continuogs in L} () uniformly in €; i.e., for
any open bounded subset U of 2 with U < Q, we have

"we( ) 12) _we( ] tl)"Ll(U)
< ay lIgell>o, 1, = 'y (B2 —1) < C(t,—1y), Vo<t <t,<T

(35

where C is a constant depending on U but is independent of € and a,, is
introduced in the proof of Lemma 2.3 above.

(3) Under the additional assumption

||g2(',')—Xw"(-)(‘)"Ll",c(szxL‘(V)) =0 0 (36)

we can estimate the error between the kinetic solution and exact entropy
solution as follows

lg. — Xwe ||L°°([0, T Li (@ x L))
< éa,, ||g2(x, U)”BVIOC(QXLI(V)) +ea, |g.(x, v, t)||L°°([o, TT; BVioe(@ % L'(V))))
+2 ”g(e)(x7 v)— Aw’(x) ”Llloc(.()xLl(V)) =0 0 (37
(4) The function w, is uniformly bounded in BV (2 x (0, T')).

Proof. (1) Let 0<t<T be fixed and 2> 0 be small. The case of
h<0 will be handled similarly. Let 7g.(x, v, 1) =g.(x,,..., x;+he,,...,
Xz, v,1), i =1,..., d. Multiplying the equation (1) for 7,g. —g. by ¢ with ¢ a
test function which is Lipschitz continuous in (0, 1 —A) x R~ x V' x [0, T']
with compact support in x in (0, 1—h)xR?"! to be precised later, and
integrating by parts, we obtain
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((Tige—ge)(/))(uut)—f(o ((1h8:—8) 9)(-,-, 0)

f(o,l—h)de_le L 1-m) xR xy

) (0.9 +a(v)-0.9)(T)8. &)

f(o,l—h)de_lex(O,t

1

€ f(o, 1-h) xR x ¥ x(0, 1)

(e, = 2w) — (Th8c—8)) @ (3%)

We then take ¢ =sign“(t,g.—g.) ¥(x, t) with xsign“(x)>0 xeR,
and ¢ is a nonnegative test function which is Lipschitz continuous in
(0, 1—h)x R*"'x ¥ x [0, T] with compact support in x in (0, 1 —4) x R?"!
and sign” is a regularization of sign function. Proceeding as in the proof of
Theorem 2.1, we obtain

Vlrlltgé_gellp('a"t)_ 1 Vlrllzge_gellp('a'ao)

J(o,l—h)xmd”x 0, 1—h)x R4 'x

) (atlp +a(U) ' ax‘/’) |Tlllge _gel

J‘(O,l—h)xIRdflex(O,t
1

f . (et = 2w) — (T8 —&0)) sign(T,8. — ) ¥
€ J(0,1-mxR xV x(0, 1)

<0

where in the last inequality we have used the properties of y, we then have

l// |T}11g5_ge| ('9',t)

f(o,l—h)xmzd”xt/

< lpl‘c;zge_gel('aUO)

0, 1-h)xR* 'x¥

+ o (@Y+a)-0) g~
O, 1-h) xR xV x(0,1)

In particular we have
[ hrie—gl (.0
oxV

<[ vlng—el .0+ @+a(v)-0.9) [rjg. —gd
oxV OxVx(0,1) (39)
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for any open set with O = (0, 1 —4) x R?~! and y any Lipschitz continuous
function in O xV x [0, T] with compact support in x in O. Similarly, we
have fori=2,...,d

[ viig—el .0
oxV

< .[OXV v |T;,g5—g€| (- 0)+ ) (O +a(v)-0.y) |T§1ge A

OxVx(0,t
(40)

for any open set with O = (0, 1) x R?"! and ¥ any Lipschitz continuous
function in O x V' x [0, T'] with compact support in x in O.

Let i € {2,...,d} be fixed. Let U and O be open bounded subsets of
Q such that U= O = O = Q. Let  be a Lipschitz continuous function in
O xV x [0, T] with compact support in x in O such that U < supp, ¥ = O.
Then (40) holds for such y and O.

We wish to prove that

[ Iig.—el<Ch @1)
UxV

where C depends on U but is independent of €. It is enough to prove this
relation for U of the form U = (y, —«, y; + &) X B(y4, R) where « > 0 and
y= ()1, ¥&) € 2 are arbitrary elements of R** and Q such that 0 < y, —«
<y;+a<1and R> 0 is arbitrary radius. Let > 0 and y > 0 be such that
O<y,—a—f—y<y+a+pf+y<1. Let 0<t, <T be such that a t, = f.
Let O=(y,—a—a,t,—y, y1+a+tayt; +y) X B(yx, R+0+da,t,), with
0>0.Lette (0, t]. Consider now the functions

0 0<x, <y, —a—a,(t—1)—y
0<t<t

T —=mtoata,(t—1)+1 y—a—a,(t—1)—y<x <
n—a—ay(t—1), 0<7t<1t

1 —a—a,(t—1)<x <
tata,(t—17) 0<7t<1t

tntatay(t—t)—x)+1 y+ata(t—1)<x <
n+oata,(t—1)+y, 0<7<t¢

0 ntoata,(t—1)+y<x <1
0<<7t<1t

®1(x1,7) =<
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and
! 0<|xy —yu| < R+da, (t—7)
0<7<t
prran ) = |8 BHAa(=D=[xa =y D+ 1 Rebda(1=7) < vy —yul <
R+da,(t—7)+5, 0<t<1
0 R4da, (t—1)+06 < |xy — Vsl
0<7<t

Now let ¥(x, 7) = ¢,(x;, 7) @,(x4, 7), T€[0, 2] and x = (x;, x4 ). It is
clear that i is nonnegative Lipschitz continuous function in O xV X [0, ¢]
with compact support in x in O and U < supp, ¥ = O. Thus, plugging Y in
(40) and using the fact that g° is uniformly bounded in BV, (2 x L'(V))
(since g° is uniformly bounded in L'(V; BV, .(Q)) = BV,,.(2 x L'(V)))
yields (41) for 1€ (0,¢,]. Now let ¢, >¢ be such that a (z,—t)=p.
Proceeding as above and using the fact that g.(-,-,?) is uniformly
bounded in BV, (2x L'(V)), we conclude that g.(-,-,¢) is uniformly
bounded in BV, (2 x L'(V)) for any t € (¢,, t,]. Continuing this process we
conclude that g.(-,-, t) is uniformly bounded in BV, (2 x L'(V)) for any
te[0,T].

Finally, using similar constructions we can prove that for any open
bounded subset O of (0, 1 —4) x R~ with O = (0, 1 —k) x R*~!, we have

[ Ig—el<ch
oxV

where C is a positive constant depending on O, but is independent of e.
This concludes the proof that g. is uniformly bounded in L*([0,T7;
BV, .(2xL'(V))). The uniform bound of w, in L*([0, T]; BV;,.(2)) can
then be deduced from that of g.. And the statement 1) is proved.

(2 Let0<t <t <T and U be an open bounded subset of £ with
Uc Q. Let y(x) e C;(U). Multiplying Eq. (1) by ¥ and integrating over
U x(t,,t,)xV, we obtain

1
089 +3 | a,(v) 0., g =~ K =8 Y =0

jUxVx(tl,tz) UxV x(t, 1) € jUxVx(tl,tz)

Hence, we have

J, e —w ety =~[" T ] a@ozy @)
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Since 0,, g., i =1,...,d are locally finite measures (consult (1) above),
the integrand on the right side is bounded by a,C(U) for |y(x)|<1.
Taking the supremum of (42) over all y with |{/(x)| < 1 yields (35).

(3) Let U be an open bounded set of  such that U = Q. Let O be an
open bounded set of € such that Uc O < O < Q. Taking G.(x, v, t) =
g.(x, v, t+ 4t) and proceeding as in the derivation of (10) and the proof of
the uniform BV, bound (consult part (1) above), we obtain

[ lelnvtra—g(nonl<| lelov 40— (00 @3
UxV oxV

from which we deduce
10: g (x, v, Dl vy < N0, 8:(x, v, 1 = O)l|L2 011 (44
The kinetic equation (1) yields
10; g (x, v, £ =0)ll .10

1
<|l(a(v)-0,) ge(x, v, t = 0)||L‘(0><V) +E ”Xwe(x,t:O) —g(x,v,t= 0)||L‘(0xV)

2
<a, |lg(x, v, t= O)”BV(OXLI(V)) +E "g(e)(x: v) _Xw"(x)”L‘(ow) (45)

Using again the kinetic equation (1) together with (44), (45) and the
uniform bound of g_(x, v, t) in L*([0, T], BV;,.(2 x L'(V))), we obtain
”ge(xa v, t) _wa(x, t)(U)”Ll(UxV)
<e |0, g.(x, v, t)”Ll(UxV) +e€|(a(v)-0,) g.(x, v, t)”Ll(UxV)
<€a, [g.(x, v, t =0)llzroxriory) T€as 18(x, v, Dllarwx o

+2 ”g(e)(xs v) _Xw°(x)||L1(0xV) (46)

Now, (46) and (36) yield ase — 0

llg(x, v, 1) = X, o (W' w iy = 0

The proof of (3) is now complete.

(4) The proof is an immediate consequence of a combination of (1)
and (2) above.
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Remark 2.4. Notice that Lemma 2.4(1) furnishes a local uniform
in € bound on the spatial variation on the microscopic scale. However, the
local Lipschitz continuity is obtained only at the macroscopic level; consult
Lemma 2.4(2). The temporal variation at the microscopic level cannot, in
general, be bounded uniformly in €. Such uniform control can, however, be
achieved if we assume that the initial data g converges to the equilibrium
20 in L (2 x L'(V)) (consult Theorem 3.3 and the remark before it).

3. HYDRODYNAMIC LIMIT OF THE KINETIC PROBLEM AND
EXISTENCE THEORY FOR THE CONSERVATION LAWS

In this section we shall prove that the conservation laws (5)—(7) has a
solution in the sense of Definition 3.1 below which selects a physically
correct solution to this problem.

Definition 3.1. We say that we BV ,(2 % (0,T)) n L*(2x[0,T])
is a weak entropic solution of the problem (5)—(7) if we have

=gy (W=l 0+ sign(w—R)(AGH) = 4(0) V. )
+ff x(0,7) Y sign(w, —k)((A(wy) -n)~—(A(k)-n)7)

ORI VAR
Ve Co(@xV x(0,T)), ¥>0, VkeR
and w satisfies the initial condition
w(x,0)=w(x) inQ

We now state the following theorem about the existence of a solution
to the conservation laws.

Theorem 3.1. Assume that

||geo||L°°(r5x[o,T]) <(y, I|g(E)|IL°°(Q><V) <C,, llge1 ||L°°(r;x[o, m <G,
||gg||L1(9xV) <Cy, la(v) 'ngeonLl(rgx(o,T)) < s,

la(v) - ng., "L‘(r(x(o,T)) <G, ”g(e)”Ll(V; @) < C7

with C;, i = 1,..., 7 positive constants independent of €.
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Assume also that the initial and boundary data f.,, g°, and g., are
compactly supported in v € V with supports included in a fixed compact set
independent of €. Finally assume that as € — 0,

-0 A7)

1
Lo (2)

[we(-,0)—w(- et @ = “ L g2, v)—w’(-)

a(v) -ng., —» a(v)-ng, stronglyin L'(I'y x(0,T)) (48)
a(v)-ng,, — a(v) -ng, = a(v)-ny,, stronglyin LYI'7 x(0,T)) (49)

Then w, converges strongly in L'( x (0, T')), as € goes to 0, to an entropic
solution of the problem (5)—(7) in the sense of Definition 3.1.

Before we give the proof of Theorem 3.1, we shall state and prove
a preliminary result showing compactness of w, and g. respectively in
LY(2x(0,T)) and LY xV x (0, T)). We shall assume that Q = (0, 1). It
is not difficult to generalize our proof to the case 2 = (0, 1) x R,

Lemma 3.1. Assume that all assumptions of Theorem 3.1 hold.
Then

(1) A subsequence of w, (still denoted w,) converges as € > 0 to
win LL (2x(0,T)) n L*([0, T]; Li,.(2)) and in L*(2 x [0, T]) weak-*.
Moreover w, converges a.e. to w in 2 x (0, 7)) and w € BV,,(2 x (0, T")).

(i) The L;, convergence of w, takes place actually in L'(2x (0, T"))
A L=([0, TT; LY(2)).

(ii)) Finally, we have ||g. — x,ll.i@xyx @,y = 0 as € = 0.

To prove Lemma 3.1(ii), we shall also need the following result.

Theorem 3.2. Let U be a bounded open subset of RY and let v, be
a sequence in L} _(U). Assume that as n — oo, the sequence v, converges
strongly in L} (U) to v e L, (U). If v, is uniformly bounded in L*(U) then
v, converges strongly to v in L'(U).

Proof of Theorem 3.2. Let n> 0 be fixed. Since U is bounded there
exists a compact set K, = U such that the Lebesgue measure meas(U \ K, )
< 7. On the other hand since v, is uniformly bounded in L*(U), by diago-
nal process to pass to a further subsequence if necessary and uniqueness of
the limit, v, converges in L* weak-% to v. Hence v € L*(U). Now
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[ o=el=]  loa=ol+[ lo.—0l
U U\K, K,

<loa =l meas(U\K,)+ | o, —0l
n

<cn+j v, — 0l
K’7

where C is a constant independent of n and #. Therefore since
1imn—>oo jK,, |Un_v| = Oa

lim sup f lv,—v| < Cn
U

n— o0

This proves the statement since # is arbitrary.

Proof of Lemma 3.1. Using Lemma 2.4(4) and Lemma 2.2 w, is
bounded uniformly in L'~ BV, (2 x (0, T)). Hence a subsequence of w,
(still denoted w,) converges to w in L}, (2 x (0, T')) and almost everywhere
in 2x(0,7T). Moreover we BV,,.(2x(0,7T)). Using Lemma 2.3 and
diagonal process to extract a further subsequence, if necessary, w, con-
verges in L*(Q2 x [0, T]) weak-% to a function we L*(Q2 x [0, T']). Since
02x(0,T) is bounded the limit w is in L'(2x (0, T)). Now by the domi-
nated convergence theorem and the above, the convergence of w, takes
place in fact in L'(2 x (0, T')).

Now by Lemma 2.4(1) w.(-,?),t€[0,T] is uniformly bounded in
BV, (). Hence it is precompact in L, (). Using Lemma 2.4(2),
[we(x, D)l is Lipschitz continuous in time. By diagonal process to
extract a further subsequence, if necessary, w.—5> w strongly in
L*([0,T]; L;,.(2)). Now by the same process we used to prove the strong
L' convergence of w, to w in L'(2x (0, T)), we conclude that w, —> w
strongly in L>([0, T]; L'(Q)).

By the properties of y, we conclude that y,_ strongly converges to y,,
in L'. Using this and the integral representation ( Theorem 2.1), and recall-
ing that the boundary data satisfy (48)-(49), we infer that g, strongly con-
verges to y,, in L'. This concludes the proof of the lemma.

Proof of Theorem 3.1. Using Lemma 3.1 a subsequence of w, (still
denoted w,) converges strongly in L' to w. We know that w e BV, (2 x
0, T)nL*(R2x[0,T]) (consult the proof of Lemma 3.1). Using
Theorem 2.2, we have
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(@ta®-0)W) gl [ a)mb g2l

L’)xVx(O,T

+[ a()mp lga —
ryx(0,T)

<0 WeClQx(0,T)), y=0, VkeR
Using Lemmas 3.1 and 2.3, (48) and (49), and the properties of y, we

then obtain

o w—kl—|

2x(0,T

_L)x(o T) ) sign(w—k)(A(w) — A(k)) - 0.y

+[ _a()-mp lg—ul
Iyx(0,T)

+L sign(w, —k)((A(w)-n)”—(A(k)-n)") ¥

1%(0,T)
<0 WeCy2,%x(0,T)), y=>0, VkeR (50)

Finally, thanks to Lemma 3.1 and (47), w satisfies the initial condi-
tions (7). Thus, combining (50) and the above, it is clear that w is an
entropic solution in the sense of Definition 3.1 to the problem (5)—(7).

The proof of the theorem is now complete.

As we saw in Remark 2.4, the temporal variation at the microscopic
level cannot, in general, be bounded uniformly in €. Such uniform control
can be achieved if we assume that the kinetic initial data satisfies

||g2( N )_Xw0(~)( : )"Llloc(.QxLl(V)) =0 0
Theorem 3.3. Assume that
"geOHLOO(I"ax[O, ) <Ci, ||g2||L°°(!2xV) <G, g1 ||L°°(1"(><[0,T]) <G,

”gg”Ll(QxV) <y, lla(v) ‘”geo”Ll(rgx(o,T)) <Cs,

la(v) - ngalliars <oy < Ce> ||g2||L1(V; @) <C7

with C;, i = 1,..., 7 positive constants independent of €.
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Assume also that the initial and boundary data f.,, g°, and g., are
compactly supported in v € V with supports included in a fixed compact set
independent of €. Finally assume that as € — 0,

||g2( N )_Xw0(~)( : )”Llloc(.@xLl(V)) P 0 (51)
a(v)-ng., — a(v) -ng, stronglyin L'(I'y x(0,T)) (52)

a(v)-ng,; — a(v)-ng, = a(v)-ny,, stronglyin LYI'7 x(0,T)) (53)

Then g, converges strongly in L®([0, T]; L'(2 xV)), as € goes to 0, to y,,
and w is an entropic solution of the problem (5)—(7) in the sense of Defini-
tion 3.1.

Before we give the proof of Theorem 3.3, we shall prove the lemma
below.

Lemma 3.2. Assume that all assumptions of Theorem 3.3 hold.
Then (i) and (ii)) of Lemma 3.1 hold true. Moreover, we have
lge — xwllz=o, 73; '@ xy) = 0 as € > 0.

Proof of Lemma 3.2. We only need to prove the last statement in
the lemma. By Lemma 2.4(3)

llg. — Xwe ||L°°([o, T LL@xL'V)) e50 0

Thus

llg. _Xw”L‘*’([o, TLLL @<LV TS50 0

Since g, is uniformly bounded in L*(Q2 xV x [0, T]) (Lemma 2.1) and
remains compactly supported in v with support included in a fixed compact
set independent of € (Lemma 2.3), and g, converges to g in L*([0,T7;
L, .(2xL'(V))), we can apply Theorem 3.2 to infer that g — y, in
L*([0,T]; LY x L'(¥))). This concludes the proof of the lemma.

Proof of Theorem 3.3. The proof of this theorem is similar to that
of Theorem 3.1 and will not be repeated.

Remark 3.1. Theorems 3.1 and 3.3 are obtained under various
assumptions including the assumptions that the data g, g°, and g, are
compactly supported in v. In fact these theorems are also valid when these
data are not necessarily compactly supported in v. The proof is based on a
BV -regularization argument.
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4, CANCELLATION OF MICROSCOPIC OSCILLATIONS VIA THE
COMPENSATED COMPACTNESS

In this section we study the one-dimensional scalar conservation law

ow+0,Aw)=0 in 2x(0,7) (54)
Boundary conditions for w on I'; x (0, 7") and I'; x (0, T") (55)
w(x, 0) = w'(x) in Q (56)

The corresponding kinetic equation is

[at +a(v)'ax] ge(xa v, t)=é()(we(x,t)(v)_ge(x7 v, t)) in QXVX(Oa T)

(57)
g.(x,v, 1) =g.(x,0,1) on I'yx(0,T) (58)
g(x,0,t)=g.,(x,0,1) on I'tx(0,T), 59)
g.(x,v,0)=g°(x,v) in QxV (60)

where all data and the relationships between the various quantities above
were precised in the introduction, we only need to take d = 1. We assume
that the conservation law (54) is nonlinear in the sense that there exists no
interval on which the flux 4(u) is linear, i.e., 4"(u) # 0 a.e. In the full space
case i.e., 2 =R, the study of this problem without using compactness
arguments (based on BV estimates as in Lemma 2.4) has been done in
ref. 7. The authors use compensated compactness, specifically, the Tartar’s
div-curl lemma.® We shall extend this result to the case of domains with
boundaries. We first give a definition of a solution to the nonlinear con-
servation laws.

Definition 4.1. We say that we L®(2x[0,T]) is a weak entropic
solution of the problem (54)—(56) if we have

_.[QX(O, T) (Iw—k| 0,y +sign(w —k)(A(w) — A(k)) - V.4h)
] signn — (A 1) — (A0 m))

+[ a()mplg—ul <O
'y x(0,T)

YWeCl(@QxVx(0,T)), y=>0, VkeR
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and w satisfies the initial condition
w(x, 0)=w'(x) inQ

The main result of this section is

Theorem 4.1. Assume that the conservation law (54) is nonlinear
(see above). Let g. be the solution of the corresponding kinetic equation
(57)-(60). Assume that

"geolle(Fax[O, rp <Ci, "gg”L“’(ng) <G,
g1 2y xro,77) < Cs> ”g(e)”Ll(.QxV) <Gy,
la(v)- ngeo”Ll(rgx(o,T)) <G, la(v) - ng "Ll(l’l_x(O,T)) <G

with C,, i = 1,..., 6 positive constants independent of €.

Assume also that the initial and boundary data g_,, g°, and g, are
compactly supported in v € V with supports included in a fixed compact set
independent of €. Finally assume that as € — 0,

[we(-,0)—w’(- )"LIIOC(Q) = ” fV g?( -, 0)—w(-)

-0 (61)

Lioe(®)
a(v)-ng., — a(v) -ng, stronglyin L'(I'y x(0,T)) (62)
a(v)-ng,, — a(v) -ng, = a(v)-ny,, stronglyin L'(I'T x(0,T)) (63)

Then w, = jV g.(x, v, t) dv converges strongly in L?(Q2 x (0, T)), p < oo,
to an entropic solution of the nonlinear conservation law (54)—(56) in the
sense of Definition 4.1.

Remark 4.1. (1) We observe that under the assumptions of the
theorem above, the conclusions of Lemmas 2.1-2.3 remain valid.

(2) Remark 3.1 is also valid for Theorem 4.1.
Proof of Theorem 4.1. The proof follows the same lines as the one

corresponding to the full space case in ref. 7. Thus, proceeding as in ref. 7,
we obtain

| aw g dv=| a()z,, dv="40r) (64)

A(we) = A(w,) (65)
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for otherwise, |[w, —w.|(x, t) =0, which in turn yields again (65). Combin-
ing (64) and (65), and passing to the limit weakly in (57), we obtain

o__ 0 . __
awe +a—xA(W€) =0

Hence a subsequence of w, (still denoted w,) converges to a weak
solution of the conservation law (54). Thanks to the nonlinearity of A(w)
and equality (65), we can use Tartar Theorem [ref. 9, Theorem 26] to
conclude that w, strongly converges in L{ (2x(0,7T)), 1<p<oo. This
combined with the process used to prove Theorem 3.1 completes the proof
of the theorem.

5. CONSERVATION LAWS WITH SOURCE TERMS

In this section we introduce the following kinetic model with forces

[0,+a(v)-0,+S(x,t,v)-0,] g.(x,0,1)

= s =g (o 0 D) i @XVXO.T)  (66)

ge(xa v, t) = geO(xs v, t) on FJ X (09 T) (67)
g(x,v, 1) =gaq(x,v,1) on I'yx(0,T), (63)
g(x,v,0)=gl(x,v) in QxV (69)

and study its relation to the inhomogeneous scalar conservation laws

ow(x,t)+0, [A4,(w)](x, 1) =S(x, 1, w) in 2x(0,7T) (70)
Boundary conditions for w on Iy x (0, 7") and I'; x (0, T) 71
w(x,0)=w(x) inQ (72)

Here, S(x, t, .) is a source term, which is in L*(2 x (0, T'); C') and satisfies
S(, x,1,0)=0. As before w.(x, )=, g.(x,v,t)dv and y, is defined by
the relation ().

In the full space case 2= R¢ a brief study of the inhomogeneous
scalar conservation laws above has been given in ref. 7 in connection with
the kinetic model
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[at +a(v) : ax] ge(xa v, t)

1
== Ol () = 8e(x, 0, 1))

+S'(x, t,v) g.(x, v, 1) in QxVx(0,T) (73)
g(x,v,8) =g, (x,0,0) on I'yx(0,T) (74)
g(x,v,t) =g, (x,0,¢) on I'tx(0,T), (75)
g.(x,v,00=g%x,v) in QxV (76)

As compared with the kinetic model (73)-(76) proposed in ref. 7, our
kinetic model (66)—(69) is more appropriate to describe the physics at the
microscopic level, which yields the conservation laws (70)—(72) at the
macroscopic level as the miscropscopic scale tends to 0. Its analysis does
not require additional assymptions on the source terms as in ref. 7. We
shall clarify this later.

Since our kinetic model is new, we shall also indicate how our analysis
extend to the full space case i.e., 2 = R”.

We begin with an existence and uniqueness result for the kinetic
model.

Theorem 5.1. Assume that
gg € LI(Q X V): a(U) “ng. € LI(F; X (09 T))s a(U) ‘nge € LI(F(; X (0’ T))

Then the kinetic model (66)—(69) has a unique solution in L*([0,T7;
L'(2xV)). Moreover, g, satisfies the integral representation

In Q,

X1
w00 = (0.5 =5 010 ) o= 5 S0t 15 )

1 L
xexp(— - )+;j o XD 1)/€) Zo 0.0 (0(5)) ds

€a,(v) -t

In Q,

g.(x,v, 1) =g%x—a(v) t, v—1tS(x, t, v)) exp(—t/€)

1 ¢
te fo eXP((s—1)/€) Lo x99 (1(5)) ds
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In Q,
1—x 1
ge(x,v,t)=g€1<<l,x*+?:)a*(v)>,v (0 )S(x t,v), t— 1( )>
1—x, 1 pt
xep (3 [ 12 B0/ X 061

where x(s) = x+ (s—1¢) a(v), x = (x1, X4), a(v) = (a;(v), a,(v)), and v(s) =
v+(s—1) S(x, t, v).

Finally, let g, and G. be two solutions of (1)—(4) with corresponding
densities w,(x, t) = [, g.(x, v, ) dv and W_(x, 1) = [, G.(x, v, 1) dv; and let
g, 5.0, 8., resp. G°, G, G., denote the corresponding data. Let

S:;o(t) = {maxx,u S'(X, t’ U) ‘VE Suppv ge(xa v, t) (& Suppv Ge(xa v, t)}
‘We have

lg. — G. ||L°°([o T LY@ xV))

<exp <f IS, (s)|ds>

X ["ge - Ge ”LI(QXV) +la(v) -n(g.o — Geo)"L‘(rg x (0, T))

+lla() - n(ge — Gl x 0,7y ] 77
lg. —G. ||L°°([o, 1LY @xvy T la(v)-n(go— Geo)"L‘(rg x(0,T))

+lla(v) -n(ga — Gl it x 0.7y

<[ 1+ [ sl enp ([ 15 do) ds | et~ Gl

+la(v) -n(g.o — eo)"L‘(rg x0,1y) T la(v)-n(g — G )"Ll(r( x(0,T)) 1
(78)

The proof of this theorem follows by arguing along the lines of the
proof of Theorem 2.1, with obvious modification to account for the source
term. We only point out here how to integrate by part in the term S J,g..
Let ¢ be as in the proof of Theorem 2.1. Let n e C7 (V) satisfy 0 <z <1,
n=1on[—1,1], and supp # = [—2, 2]. Let 5, = #(v/n). After multiplying
the equation for g. by ¢7,, the contribution of the source term is

f S(x,t,v) 0,891,
QxVx(0,1)

8. 0,8(x, t,v) on,—g.S(x, t, v) 0,01, —8S(x, t,v) ¢ 0,1,

_JQXVX(O,t) (79)



1748 Tidriri

After passing to the limit as n — oo, the right hand side converges to

_f & auS(x’ Z U) (p_geS(x’ Z U) av¢
QxVx(0,1)

We also pass to the limit as n — oo in the other terms. The rest of the
proof proceeds as in the proof of Theorem 2.1 with appropriate modifica-
tions due to the source term.

We shall give below an entropy inequality for the solution of the
kinetic problem. This is stated in the following theorem.

Theorem 5.2. The solution to the kinetic problem satisfies the relation

(@t a)-0)W) le—nl+[,_ a@)m) o=zl

L?xVx(O,T

+[ a()mlga -l
r7x(0,T)

< gsl// avS Sign(ge _Xk)
QxVx(0,T)
YWeCyQxVx(0,T)), ¥>0, VkeR (80)
Before we state our main convergence results, we shall give below a

definition of a solution to the conservation laws with source term (70)—(72).
This definition selects a physically correct solution to this problem.

Definition 5.1. We say that we BV, (2% (0,T)) n L*(2x[0,T])
is a weak entropic solution of the problem (70)—(72) if we have

‘fw , (=Kl 0+ sign(w —R)(A(w) = AGK) - V.h)

+fr Y sign(w, —k)((A(wy) -n) ™ —(A(k)-n)7)

1x(0,T)

+[ a(o)-mp lg—ul
'y x(0,T)

< US(x, t, w) sign(w—k)

Qx(0,T)

YWeCl(@2xVx(0,T)), y=>0, VkeR
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and w satisfies the initial condition
w(x, 0)=w'(x) inQ

We mention here that the kinetic entropy relations given in ref. 7 on
p. 516, formula (5.5) for the kinetic model (73)-(76) and their correspond-
ing macroscopic “continuum limit” entropy inequality given at the end of
p- 516 in ref. 7 for the conservation laws with source terms (70)—(72) are
not correct.

Next we shall state the main convergence results about the kinetic
distributions and their moments for the source case.

Theorem 5.3. Assume that

lgcollzecrs xro, 77y < Cis ||g2||L°°(ng) <G, lge1llz=crs <o, 77y < C3»
0 1
”g(e)”Ll(.QxV) <Cy, la(v) ’ngeonLl(rgx(o,T)) < s,

la(v) - ng., "L‘(r(x(o,T)) < Cs, ||g2||L1(V; Blioo(2)) < &

with C;, i = 1,..., 7 positive constants independent of €.

Assume also that the initial and boundary data f.,, g°, and g, are
compactly supported in v € I with supports included in a fixed compact set
independent of €. Finally assume that as € — 0,

50 (81)

1
Lyo.(2)

o 0wl = ], 22,00 =wC)

a(v) -ng., — a(v) -ng, stronglyin L'(I"; x(0,T)) (82)
a(v)-ng., — a(v) -ng, = a(v)-ny,, stronglyin L'(I'7 x(0,T)) (83)

Then w, converges strongly in L'(2xV x(0,T)),as € goes to 0, to an
entropic solution of the problem (5)—(7) in the sense of Definition 5.1.

The theorem above does not provide a strong convergence uniform in
€ and time of the density distribution to the equilibrium distribution. This
is due to the presence of initial layers and the lack of the control of the
velocity variation of the density distribution. Under the present assump-
tions (assumptions of Theorem 5.3) only a uniform control of the spatial
variation on the microscopic scale and a uniform control of the temporal
variation only at the macroscopic level are allowed (consult Lemma 2.4(1)
and (2) and the remark after the proof of the corresponding Theorem in
the sourceless case). The uniform control of the temporal variation of the
kinetic distribution can be achieved only if we can control uniformly, in
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addition to the spatial variation, the velocity variation and the initial tem-
poral variation of the kinetic distribution. For this purpose we assume that
the kinetic initial data satisfies

||g2( e )_Xw"(})( : )”Llloc(!)xLl(V)) PETR 0

IIgS ||L1‘oc(sz; By < c

Under the new additional assumptions, we obtain the following
uniform in € and time convergence of the kinetic ditribution to an equilib-
rium distribution.

Theorem 5.4. Assume that

||geo||L°°(rgx[0, m <Ci, ||g(s)||L°°(ng) <C,, ”gelnL‘”(rfx[o, ) <G,
”g(e)”Ll(.QxV) <Cy, la(v) 'nge()”Ll(rgx(o, ) <Cs, |la(v) 'nge1||L1(r;x(0, y < Cs
||g2||L1(V;BVl°C(Q)) <, ”g(e)”Llloc(Q;BV(V)) <Gy

with C,, i = 1,..., 8 positive constants independent of €.

Assume also that the initial and boundary data f.,, g°, and g., are
compactly supported in v € V with supports included in a fixed compact set
independent of €. Finally assume that as € — 0,

||g2( )= X0 (- )"Llloc(!lel(V)) =0 0 (34)
a(v)-ng., — a(v) -ng, stronglyin L'(I"; x(0,T)) (85)

a(v)-ng,, - a(v) -ng, = a(v)-ny,, stronglyin L'(I'y x(0,T)) (86)

Then g, converges strongly in L®([0, T]; L'(2 x V")), as € goes to 0, to y,,
and w is an entropic solution of the problem (5)—(7) in the sense of Defini-
tion 5.1.

Remark 5.1. (1) Remark 3.1 is also valid for Theorems 5.3 and 5.4.

(2) Notice that Theorems 5.3 and 5.4 are also valid for the simpler
case of full space Q = R with appropriate modifications. We shall compare
below our results for the full space case to those of ref. 7. For our general-
ized kinetic model the corresponding theorem to Theorem 5.3 for the full
space case is obtained under no additional assumptions on the data or
source terms. The analysis in ref. 7 required the additional assumption that
the source terms are in BV (). However, to obtain the uniform in € and
time convergence of the density distribution to an equilibrium distribution
(the corresponding theorem to Theorem 5.4 for the full space case), we had
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to assume an additional assumption that the initial ditribution g° is uni-
formly bounded in L, (2; BV (V)). As a result in our case the existence
theory for conservation laws with source terms is obtained under no addi-
tional assumptions on the source terms as opposed to the existence theory
given in ref. 7 which required the additional assumption that the source
terms are BV. Thus our theory is more general.

To prove these theorems we argue along the lines of the proof of
Theorem 3.1 for the sourceless case, with appropriate modifications due to
the source term. We shall therefore state without proofs the corresponding
lemmas with the necessary modifications due to the presence of the source
term.

We begin with L® estimates.

Lemma 5.1. Assume that

||geo||L°°(rgx[o, m <Ci, ||g2 lz2@xry < Cs, llges ||L°°(F,‘x[0, ) <GCs

with C;, C,, and C; positive constants independent of €. Then g, is uni-
formly bounded in L*(2 xV x [0, T]). Moreover we have

lgello < [max(”geO"Lw(Fo_x[O, T])» ||g2 "L°°([)><V): ||g51||L°°(F1_><[0, T])) +1]
X €Xp ( LT IS”. ()| dr)
Here
S, () = {max, , S'(x,t,v) : v e supp, g.(x, v, )}
Lemma 5.2. Assume that

la(v) - ngeoll'rs x 0,7y < Ci» ”g(e)”Ll(.QxV) <G,
la(v) - ng "LI(I‘I_X(O,T)) <G
with C;, C,, and C; positive constants independent of €. Then g, is uni-
formly bounded in L*([0,T]; L'(2xV)) and w, is uniformly bounded in
L*([0, T]; LY(R)). Moreover, we have
Well 2o, 73 L2y < N18ellz=(ro, 73: L@y

T
< exp <L IS%(7) dT) [lla(v)- ngeo”Ll(rgx(o, T))

+lla() - nga 'y <o,y + lg? i @xm ]
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Lemma 5.3. Assume that

"geo”L“"(rax[o, rp <Ci, ||g2||L°°(Q><V) <G,

llge1 ||L°°(1"; <017 < Cs

with C,, C,, and C, positive constants independent of €. Assume also that
the initial and boundary data g°, g.,, and g., are compactly supported in
v € V with supports included in a fixed compact set independent of €. Then

(1) w, is uniformly bounded in L*(2 x [0, T']).

(i) g. remains compactly supported in v € V' with support included
in a fixed compact set independent of e.

(iii) The speed of propagation a(v) is finite.
Lemma 5.4. Assume that

"geouL‘”(rgx[o,T]) <C, ||g(e)||L°°(QxV) <C,, g ||L°°(1"fx[0,T]) <G,
”g(e)”Ll(.QxV) <Cy, l|a(v) '”geo”Ll(rgx(o,T)) < (s,

la(v) -ng,, ||L1(rl‘x(o, ) < Cs, ||g2 Iz, Briec2y < Cos

with C,,i=1,..., 7 positive constants independent of €. Assume also that
the initial and boundary data f.,, g°, and g,, are compactly supported in
v e V with supports included in a fixed compact set independent of €.

Then

1) g(,-,t) and w(-,¢), te[0,T] are uniformly bounded in
BV, (2% L'(V)) and BV, (82) respectively. More precisely, if U and O
are open bounded subsets of 2 such that U= O < O = Q, we have for
i=1,..,d

i d ’ i
[ Ieig—gd <exp < [NAAO] ds> [ gl —g!l
UxV 0 oxV

(2) w, is time Lipschitz continuous in L} () uniformly in €; i.e., for
any open bounded subset U of Q with U = Q, we have

"we( ) t2) - we( ) tl)“Ll(U)
< (ay, lgcll=o, 73; Bvw < L'y F 10uS =@ x 10, 71y N€ellz2@x¥ x 0, 77y)(B2 — 1)
<C(t,—t)), Vo<t <t,<T &7
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where C is a constant depending on U but is independent of € and a,, is
introduced in the proof of Lemma 2.3 above.

(3) Under the additional assumptions
||g2( N )_Xw"(-)( : )"Llloc(QxLl(V)) PETR 0

le (e)”Llloc(.Q; ey < Cs,

g.(-,-,1), te[0,T] is uniformly bounded in BV, (V; L,,.(2)). Moreover,
we can estimate the error between the kinetic solution and exact entropy
solution as follows

lg. — Xwe ||L°°([o, T1; Li (@ x L'(7)))
<ea, |22(x, V)lar@xr'oy + €0 18X, v, D=0, 13 Breci@x ')
+2 IIgS(x, U)_Xwo(x)”Llloc(QxLl(V)) +e€max, ||S||L°°(.Q><[0, D
(lg(x, v, £ = 0)lzyw x L0y + I8 (X, v, Oz < L'0y))

0 (88)

e—>0

(4) The function w, is uniformly bounded in BV, (2 x (0, T')).
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